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In this paper we describe algorithms for the numerical computation of Fourier
transforms of tensor fields on the two-sphere,S2. These algorithms reduce the compu-
tation of an expansion on tensor spherical harmonics to expansions in scalar spherical
harmonics, and hence can take advantage of recent improvements in the efficiency
of computation of scalar spherical harmonic transforms.c© 2000 Academic Press
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1. INTRODUCTION

The calculation of Fourier expansions for vector fields and, more generally, tensor fields
on the two-sphere has been identified as an important computational problem in areas such
as fluid dynamics [5] and global circulation modeling [18]. Other applications include the
analysis of cosmic microwave background radiation [22] and models of stress propagation
through the earth [6].

In this paper we show how the computation of expansions in tensor spherical harmonics
may be reduced to a small number of scalar spherical harmonic transforms. Over the past
20 years a large body of work has grown, addressing the problem of efficient and stable
computation of scalar spherical harmonic transforms [1, 3, 9, 12, 15, 16]. Our reduction of
the tensor harmonic transform to scalar harmonic transforms allows this work to be applied
to a new set of problems.

Our results generalize a well-known relationship between vector and scalar spherical
harmonics (see, e.g., [13]) to the case of tensor spherical harmonics. This relation was used

1 D.R. is supported in part by ARPA as administered by the AFOSR under Contract DOD F4960-93-1-0567 as
well as NSF DMS Award 9404275. D.R. is also supported by a Presidential Faculty Fellowship under which P.K.
is supported.

514

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



COMPUTATIONAL HARMONIC ANALYSIS 515

for analysis of shallow water models by Temperton [19] to reduce the computation of vector
harmonics to that of scalar harmonics. Thus, our work can be considered a generalization
of Temperton’su-v approach to phenomena that are described by tensor fields.

To verify that our results give a practical method of computing tensor harmonic expan-
sions, we implemented the algorithms and investigated their numerical accuracy experimen-
tally. In the reduction to spherical harmonics some issues of numerical stability do arise,
and these are examined. The reduction to spherical harmonic transforms is the main point
of this paper, and in the subsequent computation of the transforms, any accurate routine
for computing the scalar harmonic transform can be used. For convenience we chose a
method based on the so-called “semi-naive” algorithm [2, 9], a technique which computes
the necessary discrete Legendre transforms in the frequency domain.

The organization of the paper is as follows. We start in Section 2 with a brief overview
of the theory of vector and scalar harmonics. In Section 3 we discuss the tensor spherical
harmonics introduced by Newman and Penrose [14] and develop the properties needed
to relate these to scalar spherical harmonics. These tensor harmonics are also known as
monopole harmonics [20, 21] and are the natural choice for the expansion of tensor fields
on the sphere. In Section 4 we develop a sampling theory for tensor fields on the sphere in
both the band-limited, and non-band-limited settings. In Section 5 we combine the sampling
and tensor harmonic results to get explicit algorithms for computing the expansion of a
finitely sampled tensor field in terms of tensor harmonics. We present our numerical results
in Section 6 and conclude in Section 7.

2. HARMONIC ANALYSIS ON THE TWO-DIMENSIONAL SPHERE

Since the scalar spherical transform will play a pivotal role in our development of tensor
spherical transforms, we first provide a brief review of scalar spherical harmonics. We
emphasize their relation to the Laplacian operator and rotation invariance, as these will be
the defining properties that we generalize for defining tensor harmonics.

Rotationally invariant differential operators occur throughout the physical sciences. It
is a well-known fact that any such operator may be expressed as a sum of powers of the
Laplacian, here denoted as1. In coordinates,1 is defined by

1 = −
(
∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)
, (1)

whereθ is the colatitude, andϕ is the azimuthal coordinate (cf. Fig. 1).

FIG. 1. Colatitude and azimuthal coordinates.
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The spherical harmonics are an orthogonal system of functions on the two-dimensional
sphere that diagonalize any rotationally invariant differential operator. This accounts for
their ubiquity in problems involving spherical symmetry. In terms of the Laplacian, the
spherical harmonics are defined up to a scalar multiple by the properties

1Ylm = l (l + 1)Ylm and
1

i

∂Ylm

∂ϕ
= mYlm. (2)

These conditions imply thatl andm are integers with|m| ≤ l .
Mathematicians and physicists use a number of different conventions for the normal-

ization of the spherical harmonics. We normalize things so that the expression forYlm in
coordinates becomes

Ylm(θ, ϕ) = Plm(cosθ)eimϕ, (3)

wherePlm is the associated Legendre function defined by

Plm(x) = 1

2l l !
(1− x2)m/2

dl+m

dxl+m
(x2− 1)l . (4)

With this normalization, the spherical harmonics satisfy the additional symmetry under
complex conjugation,Ylm=Yl ,−m, and haveL2-norm

‖Ylm‖22 =
∫ π

0

∫ 2π

0
|Ylm(θ, ϕ)|2 sinθ dϕ dθ = 4π

2l + 1
· (l +m)!

(l −m)!
. (5)

The spherical harmonics are orthogonal with respect to the inner product

〈 f, h〉 =
∫ π

0

∫ 2π

0
f (θ, ϕ)h(θ, ϕ) sinθ dϕ dθ. (6)

Using this inner product, any square-integrable function on the sphere may be expanded in
the spherical harmonic basis. The formula for the expansion is

f =
∑

l

∑
|m|≤l

‖Ylm‖−2
2 f̂ (l ,m) · Ylm, (7)

where the sum converges in the mean, and the coefficientsf̂ (l ,m) are defined byf̂ (l ,m)=
〈 f,Ylm〉. The function f̂ (l ,m) is called thescalar spherical harmonic transform of f, and
as the formulae (3) and (6) for spherical harmonics and inner products show, it may be
computed using a Fourier transform on the azimuthal variableϕ followed by integration
over the colatitudeθ .

2.1. Vector Spherical Harmonics

So far we have only considered the expansion of a complex scalar function on the sphere
in terms of an orthogonal basis of scalar functions, the spherical harmonics. This basis was
determined, up to normalization constants, by its properties under rotations of the sphere
(cf. (2)) and a choice of a distinguished point (and hence an axis) on the sphere, the north
pole.



COMPUTATIONAL HARMONIC ANALYSIS 517

There is an analogous expansion for vector fields on the sphere. We shall define an inner
product on the space of such vector fields and choose a basis for the resulting Hilbert space,
thevector spherical harmonics, based on a set of specified properties under rotation, and in
this way generalize the construction of the scalar spherical harmonics. Consequently, in the
same way that scalar spherical harmonics are used in spectral method approaches for numer-
ical solution of scalar PDEs or data analysis of scalar data on the sphere, the vector spherical
harmonics may be used effectively in cases where the data consist of vector fields on the
sphere. Typical examples that arise in practice are electromagnetic fields or wind velocity.

We start our analysis by noting that we need only consider tangential vector fields on the
sphere. If we consider the sphere as embedded in 3-space, then it is natural to view any vector
field as the direct sum of a purely radial field and an orthogonal tangential field. The purely
radial vector fields transform under rotations in exactly the same way as scalar fields, and so
the appropriate basis for the subspace of purely radial vector fields consists of the fields of the
formYlmer , whereer is the radial vector field of unit vectors. Hence, radial vector fields may
be treated using the methods developed for scalar spherical harmonics. The complementary
space of vector fields, the tangential vector fields, requires a separate treatment.

Any tangential vector field on the sphere can be expressed, except at the poles, in terms
of the usual unit vector fieldseθ andeϕ which are generated by polar coordinates(θ, ϕ)
[18]. I.e., any real tangential vector fieldv may be written as

v = vθeθ + vϕeϕ,

wherevθ andvϕ are real-valued functions defined onS2 except at the poles. For our purposes
it is most convenient, though not essential, to work with complex vector fields, in which
case the functionsvθ andvϕ are complex-valued. Given two tangential vector fields,u and
v, define their inner product to be

〈u, v〉 =
∫

S2
uθ vθ + uϕvϕ dµ, (8)

wheredµ = sinθ dθ dϕ is the invariant measure on the sphere; we denote the corresponding
Hilbert space byL2

T (S
2).

In order to generalize the eigenvalue equations (2), we must generalize the Laplacian
and angular momentum operators to act on tangential vector fields. The Laplacian of the
vector fieldv= vθeθ + vϕeϕ can be defined using the Riemannian metric on the sphere or
as the image of the Casimir operator under the action of the rotation group. In either case,
the formula in coordinates is

1v =
[
−
(
∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
− 1

sin2 θ

)
vθ + 2 cotθ

sinθ

∂vϕ

∂ϕ

]
eθ

+
[
−
(
∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
− 1

sin2 θ

)
vϕ − 2 cotθ

sinθ

∂vθ

∂ϕ

]
eϕ. (9)

The angular momentum operator is defined by

Jzv = 1

i

∂vθ

∂ϕ
eθ + 1

i

∂vϕ

∂ϕ
eϕ (10)

and is the infinitesimal generator for rotations around thez-axis.
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The vector spherical harmonics,Blm andClm, are defined so that they satisfy the differ-
ential equations

1Alm = l (l + 1)Alm (11)

and

JzAlm = mAlm. (12)

The conditions (11) and (12) are analogous to the conditions (2) for the scalar spherical
harmonics, but unlike the scalar case, these equations have a two-dimensional space of
solutions for eachl andm with l ≥ 1 and|m| ≤ l , giving rise to two independent vector
spherical harmonics,Blm andClm.

Following Morse and Feshbach [13], if we define

Blm = 1√
l (l + 1)

[
∂Ylm

∂θ
eθ + 1

sinθ

∂Ylm

∂ϕ
eϕ

]
and

Clm = −er × Blm

thenBlm andClm each satisfy the eigenvalue equations (11) and (12). The collection of
vector fields{Blm, Clm} for 1≤ l and|m| ≤ l forms a complete basis of orthogonal vector
fields in the space of all tangential vector fields, with normalization constants the same as
for the scalar spherical harmonics, i.e.,

‖Blm‖2 = ‖Clm‖2 = ‖Ylm‖2 = 4π

2l + 1

(l +m)!

(l −m)!
.

Hence any vector field on the sphere may be written as

v =
∑

1≤l ,|m|≤l

1

‖Ylm‖2 [ f B(l ,m)Blm + f C(l ,m)Clm],

where f B(l ,m)=〈v,Blm〉 and f C(l ,m)=〈v,Clm〉. The map from the vector fieldv to the
coefficients{ f B(l ,m), f C(l ,m)} is called thevector harmonic transform.

To relate the vector harmonic transform to the scalar harmonic transform, simply note
that

Blm = 1√
l (l + 1)

1

sinθ

[
1

2l + 1
[l (l −m+ 1)Yl+1,m− (l + 1)(l +m)Yl−1,m]eθ + imYlmeϕ

]
and

Clm= 1√
l (l + 1)

1

sinθ

[
imYlmeθ − 1

2l + 1
[l (l −m+ 1)Yl + 1,m− (l + 1)(l +m)Yl−1,m]eϕ

]
.
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Hence, if we define auxiliary quantitiesgθ (l ,m) andgϕ(l ,m) by

gθ (l ,m) =
〈

1

sinθ
vθ ,Ylm

〉
, (13)

gϕ(l ,m) =
〈

1

sinθ
vϕ,Ylm

〉
(14)

then

f B(l ,m) = 1√
l (l + 1)

[
l (l −m+ 1)

2l + 1
gθ (l + 1,m)

− (l + 1)(l +m)

2l + 1
gθ (l − 1,m)− imgϕ(l ,m)

]
(15)

f C(l ,m) = 1√
l (l + 1)

[
−imgθ (l ,m)− l (l −m+ 1)

2l + 1
gϕ(l + 1,m)

+ (l + 1)(l +m)

2l + 1
gϕ(l − 1,m)

]
. (16)

Equations (15) and (16) allow us to compute a vector harmonic transform by means of
two scalar transforms. Once we have calculated the quantitiesgθ (l ,m) andgϕ(l ,m) for
l ≥ 1 and|m| ≤ l ≤ N+ 1 (this will be discussed in Section 3), we may use Eqs. (15) and
(16) to calculatef B(l ,m) and f C(l ,m) for 1, |m| ≤ l ≤ N in an additional 6((N+ 1)2− 1)
scalar multiplications and 4((N+ 1)2− 1) scalar additions.

3. HARMONIC ANALYSIS OF TENSOR FIELDS

3.1. The Spin-s Harmonics

There are several different definitions of tensor spherical harmonics which have been
developed in the study of quantum mechanical angular momentum, gravitational radiation
and group representations. The spin-s harmonics are an orthogonal basis of tensor fields
that seems particularly well suited to the harmonic analysis of tensor fields, of any rank, on
the sphere. These tensor fields were introduced by Gel’fand, Minlos, and Shapiro [7] and
were rediscovered by Newman and Penrose [14] who named them spin-s harmonics. Wu
and Yang [20, 21] later defined equivalent versions of these tensor harmonics, calling them
monopole harmonics. Our exposition follows the construction used in [8, 14].

The first step in our construction is to introduce a set of basis vectors and tensors at each
point of the sphere apart from the poles. The fieldseθ andeϕ are easily visualized, but are
not the most convenient fields to work with, because fields of the formvθeθ or vϕeϕ are not
transformed onto fields of the same type under rotations. Define the fieldse+ ande− by

e+ = 1√
2
(eθ − i eϕ), e− = 1√

2
(eθ + i eϕ).

As with the fieldseθ , eϕ , the vectorse+, e− are orthonormal at each point of the sphere apart
from the north and south poles. However, the set of fields of the formv±e± is invariant under
rotations and is also much better behaved at the poles; the lines generated by the vectors
e± converge to unique lines at each pole. I.e., the fieldse± are sections of homogeneous
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subbundles of the tangent bundle, away from the poles. Given a tangent vector fieldv, we
may writev= v+e+ + v−e−, wherev± = 1√

2
(vθ ± i vϕ). In this notation the inner product

(8) can be rewritten as

〈u, v〉 =
∫

S2
u+v+ + u−v− dµ.

We denote the set of vector fields of the formv±e±, by L2(E±1).
Now construct fields of basis tensors generalizinge+ ande−. Let e0= 1, and forn≥ 1

define

en = e+ ⊗ · · · ⊗ e+, e−n = e− ⊗ · · · ⊗ e−,

where the tensor productse±n haven factors. There is a natural identificationen⊗ em= en+m

for any integersn,m, and we can use this identification to reduce the problem of finding
harmonic expansions of arbitrary tensor fields on the sphere to the problem of expanding
fields of the form f en. A tensor field of the formf en is called atensor field of type nor a
tensor field withspin weight n[14]. Let L2(En) denote the vector space of square integrable
tensor fields of typen, with the inner product

〈 f en, gen〉 =
∫

S2
f ḡ dµ.

The definition of the tensor spherical harmonics is formally identical to the scalar har-
monics, except that the Laplacian and angular momentum operators occurring in (2) are
defined for tensor fields of typen instead of scalar fields. In coordinates, the Laplacian and
angular momentum operators on tensor fields of typen are given by

1( f en) = −
[(

∂2

∂θ2
+ cotθ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
+ 2ni cotθ

sinθ

∂

∂ϕ
− n2

sin2 θ

)
f

]
en

and

Jz( f en) =
[

1

i

∂

∂ϕ
f

]
en.

Then any invariant differential operator, from tensor fields of typen to tensor fields of type
n, is a sum of powers of the Laplacian, and the spin-n harmonics are defined up to a scalar
multiple as solutions to the eigenvalue equations

1Yn
lm = l (l + 1)Yn

lm and JzYn
lm = mYn

lm. (17)

To construct explicit formulae for the spin-n harmonics, we use invariant differential
operators between spaces of smooth tensor fields of different types. Define differential
operatorsD± from smooth tensor fields of typen to smooth tensor fields of typen± 1 by

D±( f en) =
[(

∂

∂θ
± i

sinθ

∂

∂ϕ
∓ n cotθ

)
f

]
en±1. (18)

Newman and Penrose [14] use the notation∼∂ for D+ and∼̄∂ for D−. We also define operators
D±n to beD± · · · D± (n factors) forn> 0.



COMPUTATIONAL HARMONIC ANALYSIS 521

Remark. Equation (18) defines differential operators acting on sections away from the
north and south pole, but the differential operators extend smoothly to the entire sphere.
This can be seen by looking at the action ofSO(2) on the universal enveloping algebra of
so(3). For anyp, n, the space of differential operators from tensor fields of typen to tensor
fields of typen+ p is generated byDp both as a left module over the invariant differential
operators on tensors of typen+ p and as a right module over the invariant differential
operators on tensors of typen. A second way of constructing these generators is to project
the covariant derivative onto subbundles of the tensor bundles ofS2.

Let

Cnl =
|n|−1∏
k=0

(l (l + 1)− k(k+ 1)).

Then, the operatorsD±, D±n satisfy the following properties:

LEMMA 3.1.

(i) D± are rotationally invariant differential operators.
(ii) D±1=1D± and JzD± = D±Jz.

(iii) D∗± =−D∓ =−D±.
(iv) D∗+D+ =1− n(n+ 1) and D+D∗+ =1− (n− 1)n.
(v) ‖DnYlm‖2=Cnl · ‖Ylm‖2.

DEFINITION 3.1. Define the monopole harmonics of typen, degreel , and orderm to be

Yn
lm =

1√
Cnl

DnYlme0. (19)

We shall also call these the tensor spherical harmonics.

Equations (17) and (19) now imply that the functionsYn
lm make up a basis forL2(En).

THEOREM3.1. The set of functions{Yn
lm : |n| ≤ l , |m| ≤ l }, defined in(19),is an orthog-

onal basis for L2(En), satisfying(17),and such that‖Yn
lm‖2=‖Ylm‖2. Any such basis for

L2(En) is uniquely determined up to phase factors.

Thus, by Theorem 3.1 any tensor field,v= f en, of typen has an expansion

v =
∑
|n|,|m|≤l

1

‖Ylm‖2 f n
lmYn

lm,

where

f n
lm =

〈
v,Yn

lm

〉 = ∫
S2

f · Xn
lm dµ

and Xn
lm is a function onS2 such thatYn

lm= Xn
lmen. The function f n(l ,m) is called the

tensor harmonic transform of the tensor field f.
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EXAMPLE 3.1. The spin-1 and spin-(−1) harmonics are simply related to the vector
spherical harmonics of [13] through the equations

Blm = 1√
2

[
Y+1

lm + i Y−1
lm

]
Clm = − 1√

2

[
i Y+1

lm + Y−1
lm

]
.

The fieldsBlm,Clm have the advantage of being real, at a cost of poorer invariance properties.

Just as in the case of vector spherical harmonics, our definition of the tensor harmonics
(Definition 3.1) is given in terms of derivatives of the scalar spherical harmonics, but
for computational purposes we may require a more explicit definition in terms of linear
combinations of products of trigonometric functions and scalar harmonics, i.e., we would
like an expression for theXn

lm. To this end, define the differential operator

B = ∂

∂θ
+ i

sinθ

∂

∂ϕ
, (20)

and letB0 = B, and then forn≥ 0, define

Bn = (B− (n− 1) cotθ) · · · (B− cotθ)B

andB−n = Bn. From this we see that

Xn
lm =

1√
Cnl

BnYlm.

LEMMA 3.2. With B defined as in(20),

(B− n cotθ)
1

(sinθ)k
Ylm = 1

(sinθ)k+1

1

2l + 1
[(l −m+ 1)(l − n− k)Yl+1,m

− (l +m)(l + 1+ n+ k)Yl−1,m − (2l + 1)mYlm]

and

(B̄+ n cotθ)
1

(sinθ)k
Ylm = 1

(sinθ)k+1

1

2l + 1
[(l −m+ 1)(l + n− k)Yl+1,m

− (l +m)(l + 1− n+ k)Yl−1,m + (2l + 1)mYlm].

Consequently, we can now define theXn
lm directly in terms of the scalar spherical har-

monics.

COROLLARY 3.1. There are constants cn
l ,p,m such that

Xn
lm =

l+n∑
p=l−n

cn
l ,p,m

1

(sinθ)|n|
Yp,m,
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where the cnl ,p,m satisfy c0l ,l ,m = 1,c0
l ,p,m = 0 for p 6= l , c−n

l ,p,m = cn
l ,p,−m, and the recurrence

relation

cn+1
l ,p,m =

1√
l (l + 1)− n(n+ 1)

[
−mcn

l ,p,m +
(p−m)(p− 2n− 1)

2p− 1
cn

l ,p−1,m

+ −(p+m+ 1)(p+ 2+ 2n)

2p+ 3
cn

l ,p+1,m

]

for l − n ≤ p ≤ l + n, n ≤ l , and cnl ,p,m = 0 for p < l − n or p> l + n.

Proof. The first two properties of thecn
l ,p,m are obvious. The third comes from the equa-

tion X−n
l ,m= Xn

l ,−m (which follows from the fact thatYlm=Yl ,−m, and henceYn
lm=Y−n

l ,−m).
The recurrence relation comes from the identities of the previous lemma and the relation

Xn+1
lm =

1√
l (l + 1)− n(n+ 1)

(B− n cotθ)Xn
lm.

In Fig. 2 we plotXn
lm(θ, 0) for various values ofm andl . As we might expect from their

definition, their graphs are very similar to that of associated Legendre functions.
Using Corollary 3.1 we can now give an algorithm for calculating the tensor spherical

transform of typen for |n| ≤ l ≤ N using a single scalar spherical transform which we need
only compute for all ordersl , with 0≤ l ≤ N+ |n|. Starting with a tensor field,f en, we
compute the auxiliary quantities

gn(l ,m) =
〈

1

(sinθ)|n|
f,Ylm

〉
(21)

for 0≤ l ≤ N+ |n| using a scalar spherical transform. We then use the relations

f n(l ,m) =
l+n∑

p=l−n

cn
l ,p,mgn(p,m) (22)

to calculate the tensor harmonic transform in an additional(2n+ 1)[(N + 1)2− n2] scalar
multiplications and 2n[(N + 1)2− n2] scalar additions.

Numerically speaking, the expansion of theXn
lms given in Corollary 3.1 may give one

pause. TheXn
lms are expanded in terms of singular functions, some of which are not even in

L2. (This “pause” is warranted, as will be seen during our discussion of numerical results in
Section 6.) What does this result in? Bad condition numbers, unfortunately. For example,
in Eq. (21), if f = 1 and|n|> 1, thengn(0, 0)=∞. This infinity must cancel with another
infinity to give the correct coefficient, which is of order one. The constant function is not
band-limited in this context, but for its projection onto the band-limitB (via sampling) we
should havegn(0, 0) = O(B|n|−2) or so for|n|> 2. There are two alternative approaches
that may work for largern. First, if Xn

lm has a recurrence inl , the techniques in [3, 9] can
be used. Second, ifXn

lm has a nice oscillation structure inθ , the techniques in [12] can be
used.
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FIG. 2. Plot of X2
lm(θ, 0) for various values ofl andm as a function ofθ , at bandwidth 255: top left:m= 2,

l = 5; top right:m= 3, l = 5; lower left:m= 10, l = 13; lower right:m= 10, l = 100.

4. SAMPLING THEOREMS

In order to compute spherical harmonic transforms numerically, we must reduce them, at
least approximately, to a finite problem. This means restricting ourselves to a finite number
of Fourier coefficients and representing functions by their values at a finite number of points.
The simplest sampling theory is the band-limited theory, which explains how to reconstruct
a polynomial on the sphere from its values at a finite number of points.

DEFINITION 4.1. A tensor fieldf en of typen on S2 is band-limited with band-limitB,
if f n(l ,m)= 0 for all l > B. The space of such tensor fields is denotedFB(En), so that

FB(En) = spanC
{

Yn
lm : |n|, |m| ≤ l ≤ B

}
.

LetF(En) be the union ofFB(En) for all B> 0. In the casen= 0 we writeFB(E0)=FB=
FB(S2) andF =F(E0).
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The most important property of spaces of band-limited tensors is that the product of a
tensor field of band-limitB1 with a tensor field of band-limitB2 has band-limitB1+ B2. I.e.,

LEMMA 4.1.

(i) FB1(En1)⊗ FB2(En2) ⊆ FB1+B2(En1+n2).
(ii) FB1 · FB2(En) ⊆ FB1+B2.

Given a complex measures onS2, we define theFourier transformof s to be the function

ŝ(l ,m) =
∫

S2
Ylm ds.

If T = f en is a continuous tensor field of typen on S2, then we may form the products.T,
and the spherical transform of this product is the function

ŝ.T (l ,m) =
∫

S2
f.Xn

lm ds.

When the tensor field is band-limited, there are simple conditions on the measures, to
ensure agreement of the low degree Fourier coefficients ofT ands.T, defined as{T̂(l ,m)}
and{ ŝ.T (l ,m)}, respectively.

THEOREM 4.1 (Band-limited sampling).Assume that s is a complex measure on S2

such thatŝ(l ,m) = δ0,l for |m| ≤ l ≤ 2B and T is band-limited of band-limit B. Then
ŝ.T (l ,m) = T̂(l ,m) for |m| ≤ l ≤ B.

Proof. The condition ons implies that as linear functionals,s and the invariant measure
µagree on the spaceF2B. Assume, then, that this condition holds and thatT is inFB(En)and
l ≤ B. ThenY−n

l ,−m is inFB(E−n), and by the lemma,T ⊗ Y−n
l ,−m is inF2B. But ŝ.T (l ,m) =

s(T ⊗ Y−n
l ,−m).

The measures appearing in Theorem 4.1 shall be calledthe sampling measure.
The most commonly used sampling measures have support on either an equiangular grid

or a Gaussian grid. For the algorithms discussed in the following sections, we shall use an
equiangular grid, although a Gaussian grid (with points equally spaced in theϕ direction,
and cos−1(θ) a root of a Legendre polynomial) is also possible. The following is a slight
variation of the sampling theorem given in [3]. Sampling at the north pole and slightly
different normalizing of the Legendre polynomials completely account for the differences
between the expression for the weightsaj and those given there [3, p. 216].

LEMMA 4.2. Let s=
√

2π
2B

∑2B−1
j=0

∑2B−1
i=0 a(B)j δ(θ j ,ϕk) where the sample points are chosen

from the usual equiangular grid, θ j = π(2 j + 1)/4B, ϕk = 2πk/2B, and the weights aj
have a closed form expression

aj = 2

B
sin

(
π(2 j + 1)

4B

) B−1∑
k=0

1

2k+ 1
sin

(
(2 j + 1)(2k+ 1)

π

4B

)
. (23)

Thenŝ(l ,m) = 0 for |m| ≤ l ≤ 2B− 1.

In the case that the tensor field is not band-limited, Lemma 4.3 shows that via sampling
we may still obtain an approximation to its Fourier coefficients.
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LEMMA 4.3. Assume s is a measure on S2 such thatŝ (l ,m) = δ0,l for |m| ≤ l ≤ 2B.
Assume thatT is a continuous tensor field of type n, and letS= s.T. Then,

B∑
l=|n|

(2l + 1)

[∑
|m|≤l

(T̂(l ,m)− Ŝ(l ,m))2
]1/2

≤ (B+ 1)2(1+ 4B+ B2)‖s‖1
∑

B+1,|n|≤l

(2l + 1)

[∑
|m|≤l

T̂(l ,m)2
]1/2

,

where‖s‖1 is the total variation norm of s.

For a proof of this result see [11] or [10].

5. COMPUTATIONAL HARMONIC ANALYSIS

Assumes is a finitely supported measure on the sphere,T is a continuous tensor field of
typen, andB is a positive integer. We now consider the problem of computing the Fourier
coefficientŝs.T (l ,m) for |n|, |m| ≤ l ≤ B, given the values ofT at the support ofs. To see
that this amounts to the computation of some finite sums, letSbe the support ofs, and for
each pointp in S, letwp be the weight associated with that point.S is called thesampling
set. Thus

s=
∑
p∈S

wpδp.

Then, ifT = f.en,2 we have

ŝ.T
n
(l ,m) =

∑
p∈S

wp f (p)Xn
lm.

The method we propose for this calculation reduces the problem to a number of simpler
transforms.

The first reduction is to express the transforms for vector or tensor harmonics in terms of
scalar spherical harmonic transforms. We have already seen that the transform for a typen
tensor field may be written in terms of a single larger transform for complex functions.

Having done this reduction, the scalar spherical harmonic transform may be performed
using any of a variety of algorithms, e.g., see [1–4, 9, 12, 15, 16].

5.1. Vector and Tensor Sphericals

Once we have a method of computing a spherical harmonic transform, the vector and
tensor harmonic transforms are easy. For the vector case, Eqs. (13)–(16) define how to

2 If Scontains either the north or the south pole, then we are forced to make a choice for the value ofen at the
poles. The definition off at the poles will then reflect that choice, andf will have a discontinuity there to match
that ofen.
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express vector spherical coefficients in terms of scalar coefficients. For the tensor case,
Eqs. (21) and (22) are the critical ones.

The only thing which might give the reader pause is the computation of the “extra” scalar
coefficients that are required to determine the highest degree vector and tensor coefficients.
As is stated at the end of Section 3.1, the first step in calculating a tensor spherical transform
of typen with band-limit B is to compute

gn(l ,m) =
〈

1

(sinθ)|n|
f,Ylm

〉
for 0≤ l ≤ B+ |n| using a scalar spherical transform. For nonzeron, the computation
of gn(l ,m) involves scalar spherical coefficients with degrees greater than the band-limit.
Therefore we are projecting signals onto associated Legendre functions with degrees greater
than the band-limit. The reason the final result makes sense is that the sampling theory
needed to justify the computation only applies to the tensor fieldsf en. We do not need any
sampling results to justify the validity of the scalar harmonic transforms in the intermediate
stages of our computation.

6. NUMERICAL RESULTS

In this section we present results that indicate that a tensor spherical transform of typen
can be performed in a stable fashion for a useful range of problem sizes (i.e., band-limitsB)
and ranks. For a detailed discussion of the stability and efficiency of several (non-multipole-
based) scalar spherical transform algorithms, we refer the reader to [9].

Experiments were performed on a DEC Alpha 500/200 and a SGI Origin 2000, and all
code used was based on SpharmonicKit [17]. As noted in Section 2, the scalar spherical
transform of a functionf (θ, ϕ) is equivalent to a Fourier transform on the azimuthal angle
φ followed by an associated Legendre transform on the colatitude angleθ . To perform the
scalar spherical transform, we used the semi-naive algorithm (as it is referred to in [9]).
Originally developed by Dilts [2], this algorithm can compute the spherical transform of
a function f in no more thanO(B3) operations. The Dilts algorithm takes advantage of
the fact that the cosine expansion of an associated Legendre polynomial of degreel has at
mostl + 1 nonzero terms. Although using this fact does not result in a discrete Legendre
transform algorithm that is asymptotically faster than the naive algorithm, in practice it
does allow for a faster algorithm which is also stable [9] for the band-limits we consider.
Of course, at high enough band-limits (say greater than 1023), all algorithms based on a
three-term recurrence become unstable (though they are still fast!).

We recognize that other scalar spherical transform algorithms which are asymptotically
faster than the semi-naive and naive algorithms exist. However, we still used the semi-naive
algorithm in our experiments, basically for two reasons. First, as mentioned already, the
semi-naive algorithm, as measured in real time, is faster than the naive algorithm. Second,
implementation of the algorithm is simple and straightforward.

There is no reason to believe that using other algorithms would significantly alter our
results. We say “significantly” because each algorithm may have its stability quirks. This
should be kept in mind when reading our discussion of our results.

To measure the error of the tensor spherical algorithm, we employed the following pro-
cedure:
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1. Select a band-limitB and rankn.
2. Generate a set of random tensor spherical coefficientsf n

lm, uniformly distributed
between−1 and 1 for all legal values ofl andm, i.e., 0≤ m≤ B, max(m, n)≤ l ≤ B.

3. Synthesize the function

v =
∑

|n|,|m|≤l≤B

1

‖Ylm‖2 f n
lmYn

lm.

4. Take the tensor spherical transform of the synthesized function, generating a new
set of tensor spherical coefficientshn

lm.
5. Compute the error as

max
l ,m

∥∥ f n
lm − hn

lm

∥∥.
6. Repeat Steps 2–5 ten times.
7. Compute the average absolute and relative errors over the ten trials.

Comments concerning the synthesis done in Step 3 will be made at the end of this section.
Also, the random coefficients were chosen so that the resulting function samples would be
strictly real. Furthermore, the “extra” Legendre coefficients were calculated using the naive
Legendre transform.

In Table I we give the absolute and relative errors for tensor spherical transforms of
different ranks at different band-limits.

As can be seen, the error grows worse as the band-limit and rank increase. The source
of this poor behavior can easily be identified. Recall that in order to calculate the tensor
spherical coefficients, we first compute

gn(l ,m) =
〈

1

(sinθ)|n|
f,Ylm

〉
disc

, (24)

wheren is the rank of the transform. The subscript “disc” is to remind us that we are now
dealing with the discrete inner product. To calculategn(l ,m), we first divide the sampled
signal f by (sinθ)|n| and then take the scalar transform of that modified signal.

TABLE I

Tensor Spherical Transforms: Absolute (First Row) and Relative

(Second Row) Errors for Different Bandwidths and Ranks

Band-limit Rank= 1 Rank= 2 Rank= 3 Rank= 4

63 4.2201e-11 1.3648e-10 8.0897e-10 2.2950e-08
1.6975e-09 2.0537e-09 2.0277e-09 1.0708e-07

127 1.6589e-10 3.6605e-09 1.1327e-07 1.8494e-06
3.5884e-08 1.4627e-08 2.6641e-07 4.2597e-06

255 5.8974e-10 1.3734e-08 5.6144e-07 2.4696e-05
3.6359e-08 6.7320e-08 7.2475e-07 1.2126e-04

511 1.1066e-08 9.5600e-07 1.0351e-04 8.2838e-03
2.2581e-07 3.1972e-06 1.7710e-04 1.6041e-02
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FIG. 3. Semilog plots of 1/(sinθ j )
|n| for ranksn= 1, 2, and 3 at bandwidth 255.

In Fig. 3 we have plotted 1/(sinθ j )
|n| for different ranksn at band-limit= 255. Dividing

the sampled functionf by (sinθ j )
|n| is “blowing up” those sample values near the ends of

the interval. Consequently, accuracy deteriorates as the rank increases, and as the band-limit
gets larger, this deterioration simply becomes worse at an even faster rate.

Although the source of the instability cannot be entirely removed, we can easily lessen
its influence, at least to some extent. To do so, we must consider the weights used in the
Legendre-transform portion of the scalar spherical transform.

By Lemma 4.2, we see that the weights can be written as a product of sinθ and a sum
involving sines. Therefore, we can “move” one of the sines in(sinθ)|n| over to the expression
for the weights and hence remove one occurrence of dividing by sinθ j . That is, Eq. (24)
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now becomes

gn(l ,m) =
〈

1

(sinθ)|n|
f,Ylm

〉
disc

=
〈

1

(sinθ)|n|−1
f,Ylm

〉
disc-1

. (25)

The subscript “disc-1” in the above equation means that this discrete inner product is
computed using sampling weightsaj (Eq. (23)) which have been divided by sinθ .

In practice we have found that it is possible to move sin2 θ over to the weights and gain
noticeable improvement of accuracy, but that moving larger powers of sinθ to the weights
does not seem so useful. Hence, the inner product we are evaluating is

gn(l ,m) =
〈

1

(sinθ)|n|
f,Ylm

〉
disc

=
〈

1

(sinθ)|n|−2
f,Ylm

〉
disc-2

. (26)

In Fig. 4 we plot the original and modified weights for bandwidth= 255. In order to obtain
as much accuracy as possible, all modified weights used were computed in Mathematica
and then saved to disk. The C code reads in the weights as needed.

Drawing on the point we mentioned at the beginning of this section, this moving of the
sines may be necessary because we are using the semi-naive algorithm. That is, there may
be some instability issues unique to the semi-naive that we are addressing. Other algo-
rithms may require a slightly different treatment. However, the soundness of our approach
to performing tensor spherical transforms, expressing them in terms of scalar spherical
transforms, remains.

6.1. The Errors: A Closer Look

In Table II we give the absolute and relative errors of the tensor transform algorithm
for different band-limits and ranks using the modified weights. Consider the errors at

TABLE II

Tensor Spherical Transforms: Average (First Row) and Relative (Second

Row) Errors for Different Band-limits and Ranks Using the Modified (by

sin2 θ) Weights

Bandwidth Rank= 1 Rank= 2 Rank= 3 Rank= 4

63 3.3291e-13 2.9555e-12 3.8784e-11 1.1813e-08
8.5841e-12 1.6776e-11 1.2803e-10 2.1286e-08

127 1.2511e-12 1.3358e-11 3.8273e-10 2.0495e-07
1.7027e-11 1.1262e-10 2.5266e-09 5.3624e-07

255 5.4060e-12 1.0321e-10 6.0705e-09 6.2496e-06
3.4873e-10 1.5115e-09 1.3786e-07 1.3923e-05

511 1.5202e-11 1.8197e-09 1.8829e-07 6.5342e-05
3.8921e-10 5.9895e-09 1.2767e-06 1.6236e-04
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FIG. 4. Original and “modified” weights at band-limit 255.

band-limit= 255. For ranksn= 1, 2, 3, the errors seem acceptable (at least to us!), for
n= 4, less so. In order to examine the behavior of the errors more closely, we took the error
results of one iteration of the test loop and plotted the maximum absolute and relative errors
at each order m. That is, given the coefficients computed at orderm, calculate the largest
absolute and relative error of these coefficients and do this for all orders 0≤m≤ 255. In
Figs. 5 and 6 we show semilog plots of the errors for ordersm= 0, . . . ,50, for different
rank transforms. Note how the errors quickly decay as the order increases. As is obvious
in the plots, the largest errors occur at those values of the orderm for which m is near the
rankn of the transform. The cause of this phenomenon can be identified using the relation
between associated Legendre functions and Gegenbauer polynomials.
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FIG. 5. Band-limit= 255, weights modified by sin2 θ : Semilog plot of maximum absolute errors of coeffi-
cients, for ordersm= 0, . . . ,50, for different rank transforms.

Associated Legendre functions may be expressed in terms of Gegenbauer polynomials,

Plm(cosθ) = Alm sinm θ × Cl−m,m+1/2(cosθ),

whereAlm is a normalizing constant andClm(cosθ)denotes a Gegenbauer polynomial. Note
the presence of the sinm θ . When the orderm is greater than the rankn of the transform,
we are effectively no longer dividing by a power of sinθ . In other words, the higher order
associated Legendre functions “absorb” all occurrences of sinθ . So nowhere is division by
small sinθ taking place.

Therefore, we conjecture that it is possible to do a still reasonably fast tensor spherical
transform, for a reasonable rank at a reasonable band-limit. Extra precision is required only
for computing the low order coefficients. The majority of coefficients, for ordersm greater
than the rankn, could still be computed without special extended (i.e., and possibly slow)
precision “handling.”
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FIG. 6. Bandwidth= 255, weights modified by sin2 θ : Semilog plot of maximum relative errors of coefficients,
for ordersm= 0, . . . ,50, for different rank transforms.

6.2. The Synthesis

In Step 3 of our procedure for measuring the error of a rankn tensor spherical algorithm,
we synthesize the function

v =
∑

|n|,|m|≤l≤B

1

‖Ylm‖2 f n
lmYn

lm,

where f n
lm were randomly generated tensor spherical coefficients. By the definition ofYn

lm

(Corollary 3.1), this involves dividing a sampled scalar spherical harmonicYlm by (sinθ)|n|.
From the results we have presented, we know that the principle source of error in evaluating
the inner products is the division by(sinθ)|n|. By moving sin2 θ over to the weights, the
error is somewhat (though not greatly) reduced.
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However, since division by(sinθ)|n| is part of the synthesis step, a legitimate question
to ask is how much error is present in the sampled functionv itself, before any spherical
transforms are computed. Reporting error values obtained from the use of dubious sam-
pling data would not be of much value. We want to test the tensor algorithm andnot the
sampling+ tensor algorithm. To accomplish this, we used Mathematica.

As a means of testing the tensor algorithm alone, we ran the following experiment. For
band-limit B= 255 and rankn= 4, we set the tensor coefficients as follows:

f n
lm =

{
1 if m≥ 0
0 otherwise

(27)

Next, we sampledv in Mathematica. This sampling can be done at high precision and we
can control this precision too. The sample values generated were then written to disk and it
was this data that was read into the C code and tensor-transformed. The differences between
the errors obtained using the Mathematica data as input data and the errors produced using
the C-generated input data were minimal. Therefore, the errors we are seeing are not entirely
due to the sampling. Those errors really do result when the tensor transform algorithm is
implemented in a finite-precision fashion.

7. CONCLUSION

We have described algorithms for the numerical computation of Fourier transforms of
tensor fields on the two-sphere,S2. These algorithms reduce the computation of an expansion
on tensor spherical harmonics to expansions in scalar spherical harmonics and hence can
take advantage of improvements in the computation of scalar spherical harmonic transforms.

Although the algorithms we describe are susceptible to certain numerical instabilities,
we present numerical results which indicate that minor variations of the algorithms can
produce stable results for a useful range of bandwidths and ranks.
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